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Finite-Element Analysis of Magnetostatic
Wave Propagation in a YIG Film

of Finite Dimensions

MASANORI KOSHIBA, SENIOR MEMBER, IEEE, AND YI LONG

Abstract —A unified numerical approach based on the finite-element

method is described for the magnetostatic waye propagation in a YIG film

of finite dimensions. Both magnetostatic Yolume waye and magnetostatic

surface wave modes are treated. The validity of the method is confirmed by

calculating the magnetostatic wave modes in a YIGloaded rectangular

waveguide and in a YIG film of finite width. The numerical results of a

YfG film with nonuniform bias field afong the film width are also pre-

sented, and the effects of hias field dktributions on the delay characteris-

tics aud potential profiles are examined.

I. INTRODUCTION

M AGNETOSTATIC WAVE (MSW) propagation in

a YIG film of finite dimensions has been reported

in previous papers [1]–[11]. O’Keeffe et al. [2] and Bajpai

et al. [4] have investigated the effects of finite sample

widths on MSW propagation. Recently, interest in three-

dimensional inhomogeneous MSW waveguides is increas-

ing because high-precision dispersion control is making

MSW device application possible [1], [3], [5]–[11]. Morgen-

thaler et al. [1], [3], [6], [8], [9] have discussed the control of

MSW propagation by means of a spatially nonuniform

bias field. It is also found that control of important

features of MSW modes is afforded through the use of bias

field gradients and that magnetostatic forward volume

waves can be forced to have strong field-displacement

characteristics that are either nearly reciprocal or very

strongly nonreciprocal. Such control may provide the basis

for new forms of microwave signal processors [6]-[9]. In

order to analyze these inhomogeneous MSW waveguides,

the variational method [12], [13] and the finite-element

method [14] have been introduced. These methods are

valid for the solution of inhomogeneous waveguide struc-

tures. In the former approach, however, great care is

necessary in choosing the trial functions. The latter ap-

proach, on the other hand, is applied only to planar
structures of infinite width.

In this paper, a unified approach based on the finite-ele-

ment method is described for the MSW propagation in a

YIG film of finite dimensions. Both magnetostatic forward

volume wave (MSFVW) and magnetostatic surface wave

(MSSW) modes are treated. In this finite-element ap-

Manuscript received February 23, 1989; revised July 10, 1989.
The authors are with the Department of Electronic Engineering,

Hokkaido University, Sapporo, 060 Japan.

IEEE Log Number 8930663.

~

Fig. 1. MSW waveguide.

divided into

consider the

preach, the cross section of the waveguide is

triangular elements [15], [16] and it is easy to

inhomogeneities in the bias field and/or the magnetiza-

tion. The validity of the method is confirmed by calculat-

ing the MSW modes in a YIG-loaded rectangular wave-

guide [10] and in a YIG film of finite width [4]. Numerical

results on the delay characteristics and potential profiles of

a YIG film with

examined.

nonuniform bias field distributions are

II. BASIC EQUATIONS

MSW waveguide, where the boundariesFig. 1 shows a

171and I’z are assumed to be perfect electric conductors

(PEC’S) or perfect magnetic conductors (PMC’S), and 17~

and rd are assumed to be PEC’S.

The constitutive relations are

~=Po[Prl~ for ferrite (la)

B=poH for dielectric (lb)

where B is the magnetic flux density, H is the magnetic

field, p. is the permeability in free space, and [p,] is the

relative permeability tensor [14].

For the MSW propagating along the y direction, the

governing equations can be written by

13Bx (3BZ
— – js/lBy = O

ax + dz
(2)

HX=–: (3a)

(3b)

(3C)
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Fig. 2. Second-order triangular element.

where ~ is the phase constant in the y direction, s = + 1 is

a directional parameter [14], and @ is the magnetostatic

potential.

III. MATHEMATICAL FORMULATIONS

Dividing the region enclosed by the boundaries TI to r~

into a number of second-order triangular elements [15],

[16] as shown in Fig. 2, the magnetic potential @ within

each element is defined in terms of the magnetic potential

$~ at the nodal point k (k=l,2, ” “ .,6):

o={PJ}T{O}emp(-j@3y) (4)

where

{N}=[N1 N, NJ Nd N5 N6] ‘. (5b)

Here shape functions NI to N6 are given by

NI = LI(2LI –1) (6a)

N2=L2(2LZ–1) (6b)

Nq = L3(2L3 –1) (6c)

Nb = 4L1LZ (6d)

N5 = 4LZL3 (6e)

N6 = 4L3LI’ (6f)

with the area coordinates Ll, L2, and Lq [15], [16]. The

relation between the area coordinates and the Cartesian

coordinates is expressed in the following form:

where (x,, ZJ) are the Cartesian coordinates of the vertex j

(j= 1,2, 3) of the triangle. Also, the diagonal component p

and the off-diagonal component K of the relative perme-

ability tensor within each element are approximated by

P={ N} T{P}e (8a)

K={ N} T{K}e (8b)

where ,

{P}e=[~l P2 P3 P4 P5 P6]T (9a)

{K}, =[KI b K3 Kg KS K6]T (9b)

and p~ and ~~ (k=l,2,. . . ,6) are, respectively, the p and

K values at the nodal point k. Using a Galerkin procedure

on (2), we obtain

j{ }(dBX (?Bz
N —+—

ax dz )
– jslf3B, dfl = {O} (lo)

e

where the inte~~ation is carried out over the element

subdomain Q,, and {O} is a null vector.

Integrating by parts, we obtain for (10)

~[{N.}B.+{N.}B, +j@{N}~\,]dQ

j{ }– N B~dI’= {O} (11)
e

where

B.= BXnX + BZnZ. (12)

Here {NX } = d {N }/dx; {N, } = d {N }/dz; the second

integration on the left-hand side in (11) is carried out over

the contour I?eolf the region Q.; and nX and n= are the x

and z components of an outward normal unit vector to r,,

respectively.

Noting that B. is continuous across I’e (boundary condi-

tions at the interface between two different media) and

B.= O on 1’3 and rd, from (l), (3), and (4) the following

global matrix equation is derived:

[A]{+} =- ~ (-1)1~/ [{ N}, BX,i]/podz (13)
1=1 e’ e’

where

[A]=~~[/12pe{N} {N} T- PSKe
ee

.({ NZ}{N}T+{N}{N=}T)

‘{ N.}{ N.} T+ P,{ N,}{ Nz}T]dxdz

for bias field applied parallel to the x axis (14a)

[A]=~~[,~2{N} {N} ’+jKe
ee

.({ Nz}{Nx}~-{Vx}{Nz}~)

~- Pe({N. }{ Nx}T+{NZ} {Nz}T)]dxd~

for bias field applied parallel to they axis (14b)

and

[~l=ZJ[B2P={N} {N} Ti-~SKe

ee

.({ N..}{ N} T+{ N}{X}T)

+{ Nz}{N, }T+\b{Ny} {Ny}T]dxdz

for bias field applied parallel to the z axis. (14c)

Here fle and Kc are expressed by (8a) and (8b), respec-

tively; {@} is the nodal magnetic potential; Ee and E=,
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extend over all elements and the elements related to Fi

(i= 1,2), respectively; BX,, is the magnetic flux density on

17,; and {N}, is the shape function vector on r,, namely,

{N}z = {IV(X1. z)}.

Combining the boundary conditions on the planes 171

and rz, (13) becomes

[X]{$}= {o} (15)

where

I

[A] for BX,l = B,,z = O

[A],, for{+ }l={+}z= {o}

I‘A]=[K :%1for BX,l=O and {~}z=={O}

[

[A]oo [A]o,

[A],. [A],, 1 for BX,2=0 and {$}1= {0}

(16)

for Bx,l =BXZ=O

for{+ }1={@}2= {0}

for By,l = Oand {4}, = {0} (17)

for BX,, =Oand{@}l= {O}

[1{+}0
{’$}= {+}1 (18)

{+}2

[

[A]m [A],, [A]o,

I

[A] = [A]lo [A]ll [A]12 . (19)

[A],. [A],, [A],,

Here [AI 00, [AI 01,”” ., [A],, are the submatrices of [A], and

{o}, is the nodal magnetic potential on 171(i= 1, 2). Using

(15), one can determine the dispersion characteristics of

MSW waveguides.

IV. COMPUTED RESULTS

First, we consider a YIG-loaded rectangular waveguide

[10] as shown in Fig. 3, where the planes x = O, x = a,

z = O, and z = b are assumed to be PEC’S, the bias field is

along the x axis, and there exist MSSW modes. In this

case, the potential profile is symmetric with respect to the

plane x = a/2. Taking advantage of this symmetry, we

subdivided one half of the cross section into second-order

triangular elements, where the plane x = a/2 is assumed

to be a PMC. Table I exhibits the computed results, where

a = 20 mm, b =10 mm, t = 1 mm, the saturation magneti-

zation 4 TM, = 1750 G, the bias field Ho = 1800 Oe, &X,Ct

is the exact solution [10], and ~~~~ is the finite-element

solution. It is apparent from Table I that the finite-element

solutions are in good agreement with the exact solutions.

The convergence behavior of the phase constant /3 is

shown in Fig. 4. With an increasing number of elements,

the phase constant ~ converges monotonically. Also, we

Y x

Fig. 3. A YIG-loaded rectangular waveguide (the planes x = O, .x= a,
2 = O, and z = b are assumed to be PEC’S) or a YIG fdm of finite

width (the planes x = O and x = a are assumed to be PMC’S and the

planes z = O and z = b are assumed to be PEC’S).
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Convergence behavior of phase constant /3,

find from Table I and Fig. 4 that the accuracy of the

finite-element solutions falls off as the film position Z. is

lowered or the frequency F increases.

Next, we consider a YIG film of finite width [4] as

shown in Fig. 3, where the planes x = O and x = a are
assumed to be PMC’S, the planes z = O and z = b are

assumed to be PEC’S [2], [4], the bias field is along the z

axis, and there exist MSFVW modes. Table II exhibits the

computed results, where a = 3 mm, dl = 50 pm, dz = 178

pm, t= 9.1 pm, 4 Titf, = 1750 G, and the effective static

field HZ = 3000 Oe (Hl = Ho – 4mM~ for MSFVW modes).

The finite-element solutions agree well with the exact

solutions [4]. Also, larger errors are observed as the fre-

quency increases.

Lastly, we consider the MSW waveguide with a bias

field of parabolic distribution where the planes x = O and

x = a in Fig. 3 are assumed to be PMC’S, the planes z = O

and z = b are assumed to be PEC’S, and the bias field is



KOSHIBA AND LONG: FINITE-ELEMENT ANALYSIS OF MAGNETOSTATIC WAVE PROPAGATION 1771

TABLE I

COMPARISON BETWEEN EXACT SOLUTIONS AND FEM

SOLUTIONS FOR MSSW MODES

Zo F Phase constant (l/mm)

(mm) (Gffz) ff exact (3 FEU

7.1 0.0419056 0.0419052

7.3 0.1193626 0.1193620

8.0 7.4 0.1633299 0.1633295

7.5 0.2235310 0.2235304

7.6 0.3563842 0.3563856

7.1 0.1104845 0.1104839

7.2 0.2253471 0.2253469
5.0

7.3 0.4832040 0.4832315

7.4 0.9011406 0.9019049

a = 20 mm, b =10 mm, t =1 mm, 47M, =1750 G,
Ho= 1800 Oe.

TABLE II

COMPARISON BETWEEN EXACT SOLUTIONS AND

FEM SOLUTIONS FOR MSFVW MODES

F

(Idfz)

8.81

8.91

9.01

9.11

9.21

9.31

9.41

9.51

Phase constant (l\mm)

O . ...*

3.200592

16.25167

28.59313

41.05768

53.96476

67.73479

82.69378

99.12766

6 FEM

3.200420

16.25179

28.59392

41.06009

53.97119

67.74865

82.71970

99.17226

—

Fig. 5.

d1=50 pm, d2=178 pm, t=9.1 pm,

a‘3 mm, 4TM. =1750 G, and H, =
30000. “
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Bias field distribution along the width of a YIG film.

along the z axis. The two parabolic distributions consid-

ered here are shown in Fig. 5. The bias field distribution is

given by
IIZ=H1-(H1 -H,) X[(a-2x)/a]2 (20)

where HI and H~ are the minimum and the maximum

value of the effective field for a hollowed parabolic distri-

bution (case A), respectively, and HI and H2 are the

maximum and the minimum value for a projecting

parabolic distribution (case B), respectively.
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Fig. 6. Time delay characteristics for parabolic bias field distribution

along the film width. (a) Hollowed parabolic distribution. (b) Project-
ing parabolic distribution.

The time delay characteristics are illustrated in Fig. 6(a)

and (b) for cases A and B, respectively, where the dotted

line represents the delay curve for the homogeneous case

[4]. These figures show that the nondispersive bandwidth is

extended in the case of the parabolic distribution of the

bias field. Comparing case A with case B, it is also found

that the projecting parabolic bias field offers a wider

nondispersive bandwidth.

The effect of parabolic bias field on the potential profile

is investigated, IFig. 7(a), (b), and (c) shows the potential

profiles for the uniform, hollowecl parabolic, and project-

ing parabolic bias fields, respectively. The phase constant

~ is independent of the direction of propagation. In the

case of parabolic bias fields, the potential has a stronger

localization. ~omparing case A with case B, it is found

that the projecting parabolic bia~s field creates stronger

potential-displacement nonreciprocity.

A similar potential-displacement nonreciprocity was re-

ported in [9].

V. CONCLUSIONS

A finite-element method is developed for the analysis of

the MSW propagation in a YIG film of finite dimensions.

Both MSVW and MSSW modes are treated in a unified
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Fig. 7. Potentiaf profiles. (a) Homogeneous distribution. (b) Hollowed
parabolic distribution. (c) Projecting parabolic distribution.

manner. In order to examine the validity of the present

method, MSW modes in a YIG-loaded rectangular wave-

guide and in a YIG film of finite width are calculated. We

also present the application of this approach by analyzing

the MSFVW propagation in a YIG film with the bias field

of parabolic distribution along the film width. It is found

that the parabolic bias field offers an improvement in the

nondispersive bandwidth.
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