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Finite-Element Analysis of Magnetostatic
Wave Propagation in a YIG Film
of Finite D1men310ns

MASANORI KOSHIBA, SENIOR MEMBER, IEEE, AND YI LONG

Abstract — A unified numerical approach based on the finite-element
method is described for the magnetostatic wave propagation in a YIG film
of finite dimensions. Both magnetostatic volume wave and magnetostatic
surface wave modes are treated. The validity of the method is confirmed by
calculating the magnetostatic wave modes in a YIG-loaded rectangular
waveguide and in a YIG film of finite width. The numerical results of a
YIG film with nonuniform bias field along the film width are also pre-
sented, and the effects of bias field distributions on the delay characteris-
tics and potential profiles are examined.

I. INTRODUCTION

AGNETOSTATIC WAVE (MSW) propagation in
Ma YIG film of finite dimensions has been reported
in previous papers [1]-[11]. O’Keeffe er al. [2] and Bajpai
et al. [4] have investigated the effects of finite sample
widths on MSW propagation. Recently, interest in three-
dimensional inhomogeneous MSW waveguides is increas-
ing because high-precision dispersion control is making
MSW device application possible [1], [3], [5]-[11]. Morgen-
thaler et al. [1], [3], [6], [8], [9] have discussed the control of
MSW propagation by means of a spatially nonuniform
bias field. It is also found that control of important
features of MSW modes is afforded through the use of bias
field gradients and that magnetostatic forward volume
waves can be forced to have strong field-displacement
characteristics that are either nearly reciprocal or very
strongly nonreciprocal. Such control may provide the basis
for new forms of microwave signal processors [6]-[9]. In
order to analyze these inhomogeneous MSW waveguides,
the variational method [12], [13] and the fipite-element
method [14] have been introduced. These methods are
valid for the solution of inhomogeneous waveguide struc-
tures. In the former approach, however, great care is
necessary in choosing the trial functions. The latter ap-
proach, on the other hand, is applied only to planar
structures of infinite width.

In this paper, a unified approach based on the finite-ele-
ment method is described for the MSW propagation in a
YIG film of finite dimensions. Both magnetostatic forward
volume wave (MSFVW) and magnetostatic surface wave
(MSSW) modes are treated. In this finite-element ap-
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Fig. 1. MSW waveguide.

proach, the cross section of the waveguide is divided into
triangular elements [15], [16] and it is easy to consider the
inhomogeneities in the bias field and/or the magnetiza-
tion. The validity of the method is confirmed by calculat-
ing the MSW modes in a YIG-loaded rectangular wave-
guide [10] and in a YIG film of finite width [4]. Numerical
results on the delay characteristics and potential profiles of
a YIG film with nonuniform bias field distributions are
examined.

II. Basic EQUATIONS

Fig. 1 shows a MSW waveguide, where the boundaries
I and I}, are assumed to be perfect electric conductors
(PEC’s) or perfect magnetic conductors (PMC’s), and T,
and I, are assumed to be PEC’s,

The constitutive relations are

an“‘o[ﬂr]H (13)
B=u,H (1v)
where B is the magnetic flux density, H is the magnetic
field, p, is the permeability in free space, and [p,] is the
relative permeability tensor [14].
For the MSW propagating along the y direction, the
governing equations can be written by

for ferrite

for dielectric -

dB, 0B,

7 + e =0 (2)

8¢

H —_
== (3a)
H,= jsBo (3b)

do

H —_ e —
= (30)
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Fig. 2. Second-order triangular element.

where B is the phase constant in the y difection, s=+1is
a directional parameter [14], and ¢ is the magnetostatic
potential.

III. MATHEMATICAL FORMULATIONS

Dividing the region enclosed by the boundaries I} to T,
into a number of second-order triangular elements [15],
[16] as shown in Fig. 2, the magnetic potential ¢ within
each element is defined in terms of the magnetic potential
¢, at the nodal point k£ (k=1,2,---,6):

¢={N}"{¢}.exp(-jsB,) (4)
where

(6),=[d1 & & & s &]"
(N}=[M N N N N N

(52)
(5b)
Here shape functions N, to N; are given by

Ny = L1(2L1 - 1)

(62)

N,=L,(2L,-1) (6b)
Ny=Ly(2L; - 1) (6c)
N,=4L,L, (6d)
Ny=4L,L, (6¢)
N,=4L,L, (6f)

with the area coordinates L,, L,, and L, [15], [16]. The
relation between the area coordinates and the Cartesian
coordinates is expressed in the following form:

x X1 X, X3 || Ly
zl =1z 2z z|| L (7)
1 1 1 1L

where (x,, z,) are the Cartesian coordinates of the vertex j
(j=1,2,3) of the triangle. Also, the diagonal component p
and the off-diagonal component « of the relative perme-
ability tensor within each element are approximated by

p={N}"{r}. (82)
k={N}7{x}, (8b)

where
{(n}.,=[m B2 B2 Ba Bs Be]" ()
{k},=[K1 K2 K3 K4 s Ke]" (9b)
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and p, and k, (k=1,2,---,6) are, respectively, the p and
k values at the nodal point k. Using a Galerkin procedure
on (2), we obtain

0B,

/ {N}( - (10)

where the integration is carried out over the element
subdomain 2,, and {0} is a null vector.
Integrating by parts, we obtain for (10)

/;[{Nx}Bﬁ{Nz}Bz+st{N}B_v] aQ

0B,
+
dx

—‘]S;BBV dQ = {0}

~ [(N}B,dT= {0} (11)
where
B,=Bn_+Bn,. (12)

Here {N,}=09{N}/0x; {N,} =3{N}/0z; the second
integration on the left-hand side in (11) is carried out over
the contour T, of the region ,; and n, and n, are the x
and z components of an outward normal unit vector to I',,
respectively.

Noting that B, is continuous across I', (boundary condi-
tions at the interface between two different media) and
B,=0 on I and T,, from (1), (3), and (4) the following
global matrix equation is derived:

[41(9} == £ DT [[(¥) B ] fpodz (13)
where
[4]= 2 [[B2{N) (V)" — Bse,

NN+ (NN,
NN+ p NN ] dxdz

for bias field applied parallel to the x axis (14a)

(1= X [N {8) 7+ s,

(NN = (NN
+ (NN T+ (N (N)T)] dxd:

for bias field applied parallel to the y axis (14b)
and
[4]1=% [[B2uAN}{N}"+Bsx,
(NN + (N HNLT)
NN+ (NN ] dxdz
for bias field applied parallel to the z axis. (14c)

Here p, and k, are expressed by (8a) and (8b), respec-
tively; {¢} is the nodal magnetic potential; ¥, and ¥,
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extend over all elements and the elements related to I
(i =1,2), respectively; B, , is the magnetic flux density on

T; and {N}, is the shape function vector on I, namely,

{N},={N(x,2)}.
Combining the boundary conditions on the planes I
and T, (13) becomes

[4]{¢}={0) (15)

where
[4] forB, ;=B ,=0
[ 4]0 for {¢},={9},= {0}
1= | {’j” for B, ,=0 and {¢},= {0}
Hji’z {j}zz] for B, ,=0 and {¢},={0}

(16)
for B, ,=B,,=0
for {¢},={¢},= {0}

for B,;=0and {¢},= {0} (17)

for B.,=0and {¢},= {0}

{¢}o
{¢h
{¢)

{¢} = (18)

[4]le0 [4le [4]o
[A]= [A]l() [A]n [A]IZ . (19)
(4l [4ln [4]»

Here [ A]qy,[ Al 15 - . [ A]5, are the submatrices of [ 4], and
{¢}, 1s the nodal magnetic potential on I, (i =1,2). Using
(15), one can determine the dispersion characteristics of
MSW waveguides.

1IV. CoMpPUTED RESULTS

First, we consider a YIG-loaded rectangular waveguide
[10] as shown in Fig. 3, where the planes x =0, x =g,
z=0, and z = b are assumed to be PEC’s, the bias field is
along the x axis, and there exist MSSW modes. In this
case, the potential profile is symmetric with respect to the
plane x = a /2. Taking advantage of this symmetry, we
subdivided one half of the cross section into second-order
triangular elements, where the plane x =a /2 is assumed
to be a PMC. Table I exhibits the computed results, where
a=20 mm, =10 mm, ¢ =1 mm, the saturation magneti-
zation 47 M =1750 G, the bias field H,=1800 Oe, B.,...
is the exact solution [10], and Bugy, is the finite-element
solution. It is apparent from Table I that the finite-element
solutions are in good agreement with the exact solutions.
The convergence behavior of the phase constant B is
shown in Fig. 4. With an increasing number of elements,
the phase constant 8 converges monotonically. Also, we
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Fig. 3. A YIG-loaded rectangular waveguide (the planes x =0, x = a,
z=0, and z=5, are assumed to be PEC’s) or a YIG film of finite
width (the planes x =0 and x = a are assumed to be PMC’s and the
planes z =0 and z =b are assumed to be PEC’s).
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Fig. 4. Convergence behavior of phase constant B.

find from Table I and Fig. 4 that the accuracy of the
finite-element solutions falls off as the film position z is
lowered or the frequency F increases.

Next, we consider a YIG film of finite width [4] as
shown in Fig. 3, where the planes x =0 and x=a are
assumed to be PMC’s, the planes z=0 and z=5 are
assumed to be PEC’s [2], [4], the bias field is along the z
axis, and there exist MSFVW modes. Table II exhibits the
computed results, where a =3 mm, d, =50 pm, d, =178
pm, =91 pm, 47M, =1750 G, and the effective static
field H,=3000 Oe (H,= H,—4aM, for MSFVW modes).
The finite-element solutions agree well with the exact
solutions [4]. Also, larger errors are observed as the fre-
quency increases.

Lastly, we consider the MSW waveguide with a bias
field of parabolic distribution where the planes x =0 and
x=a in Fig. 3 are assumed to be PMC’s, the planes z=10
and z=) are assumed to be PEC’s, and the bias field is
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TABLE 1
COMPARISON BETWEEN Exact SoLuTIONs AND FEM
SOLUTIONS FOR MSSW MODES

Zo F Phase constant (1/mm)
(mm) {GHz) B exact B FEn
7.1 0.0419056 0.0419052
7.3 0.1193626 0.1193620
8.0 7.4 0.1633299 0.1633295
7.5 0.2235310 0.2235304
7.6 0.3563842 0.3563856
7.1 0.1104845 | 0.1104839
5.0 7.2 0.2253471 0.2253469
’ 7.3 0.4832040 0.4832315
7.4 0.9011406 0.9019049

a=20 mm, =10 mm, ¢t=1 mm, 47M,=1750 G,
H, =1800 Oe.

TABLE II
COMPARISON BETWEEN EXACT SOLUTIONS AND
FEM SoLUTIONS FOR MSFVW MODES

F Phase constant (1/mm)
(GHz) Bexact B rem
8.81 3.200592 3.200420
8.91 16.25167 16.25179
9.01 28.59313 28.59392
9.11 41.05768 41.06009
9.21 53.96476 53.97119
9.31 67.73419 67.74865
9.41 82.69378 82.71970
9.51 99.12766 99.17226
d =50 pm, d,=178 pm, =91 pm,
a=3 mm, 47M,=1750 G, and H,=
3000 O.
Hmax
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e
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Fig. 5. Bias field distribution along the width of a YIG film.

along the z axis. The two parabolic distributions consid-
ered here are shown in Fig. 5. The bias field distribution is
given by

Hl=Hl—(Hl—Hz)X[(a—2x)/a]2 (20)
where H, and H, are the minimum and the maximum
value of the effective field for a hollowed parabolic distri-
bution (case A), respectively, and H;, and H, are the
maximum and the minimum value for a projecting
parabolic distribution (case B), respectively.
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Fig. 6. Time delay characteristics for parabolic bias field distribution
along the film width. (a) Hollowed parabolic distribution. (b) Project-
ing parabolic distribution.

The time delay characteristics are illustrated in Fig. 6(a)
and (b) for cases A and B, respectively, where the dotted
line represents the delay curve for the homogeneous case
[4]. These figures show that the nondispersive bandwidth is
extended in the case of the parabolic distribution of the
bias field. Comparing case A with case B, it is also found
that the projecting parabolic bias field offers a wider
nondispersive bandwidth.

The effect of parabolic bias field on the potential profile
is investigated, Fig. 7(a), (b), and (c) shows the potential
profiles for the uniform, hollowed parabolic, and project-
ing parabolic bias fields, respectively. The phase constant
B is independent of the direction of propagation. In the
case of parabolic bias fields, the potential has a stronger
localization. Comparing case A with case B, it is found
that the projecting parabolic bias field creates stronger
potential-displacement nonreciprocity.

A similar potential-displacement nonreciprocity was re-
ported in [9].

V. CONCLUSIONS

A finite-element method is developed for the analysis of
the MSW propagation in a YIG film of finite dimensions.
Both MSVW and MSSW modes are treated in a unified
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Fig. 7. Potential profiles. (a) Homogeneous distribution. (b) Hollowed

parabolic distribution. (c) Projecting parabolic distribution.

manner. In order to examine the validity of the present
method, MSW modes in a YIG-loaded rectangular wave-
guide and in a YIG film of finite width are calculated. We

also

present the application of this approach by analyzing

the MSFVW propagation in a YIG film with the bias field
of parabolic distribution along the film width. It is found

that

the parabolic bias field offers an improvement in the

nondispersive bandwidth.
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